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NOTE ON n-(1,r7)-IDEALS OF COMMUTATIVE RINGS

ADAM ANEBRI

ABSTRACT. In this paper, we introduce and study n-(1, r)-ideals of com-
mutative rings with nonzero identity. Let R be a ring and n be a
positive integer. A proper ideal I of R is called an n-(1,r)-ideal if
whenever nonunit elements z1,...,z, € R and x1---Zn+1 € I, then
T1T2 -+ Tp € I or Tp41 € Z(R). Various examples and characterizations
of n-(1,r)-ideals are given. For example, we prove that if R admits an
n-(1,r)-ideal that is not an (n—1)-(1, r)-ideal, then R is a local ring. We
provide an example of an n-(1, r)-ideal that is not an (n—1)-(1, r)-ideal.
In addition, we give a description of n-(1,r)-ideals in chained rings. Fi-
nally, we study the transfer of n-(1,r)-ideals in the localization of rings,
the power series rings and the trivial ring extension.

1. INTRODUCTION

In this paper, we assume that all rings are commutative with nonzero
identity and n a positive integer. If R is a ring and F is an R-module, then
the set of zero-divisors of R on E is Zr(E) = {r € R|re = 0 for some 0 #
e € E}. If no confusion can arise, we may delete the R and write Z(E).
Also, Z(R) denotes the set of all zero-divisors of R; Anng(F) := Ann(F),
the annihilator of a subset F of R; Reg(R) := R\ Z(R), the set of regular
elements of R; /I denotes the radical of an ideal I of R, in the sense of
[12, page 17]. For a proper ideal I of R and = € R, the residual of I by
x, denoted by (I :gr x) is defined as {r € R|rz € I}. A ring R is called a
chained ring if either x € yR or y € xR for all 0 # z,y € R.

The prime ideal, a crucial subject in ideal theory, has been thoroughly
examined by various authors. In [1], Anderson and Badawi introduced and
explored the concept of n-absorbing ideals, representing a generalization of
prime ideals. A proper ideal I of R is called an n-absorbing ideal if whenever
x1- - Tpt1 € I for some elements x1,...,z,11 € R, then there are n of the
x;’s whose product is in I. In a recent work, Ulucak et al. [15] presented
an additional generalization of prime ideals known as n-1-absorbing prime
ideals. A proper ideal I of R is said to be an n-1-absorbing prime ideal
for some positive integer n if whenever nonunit elements zi,..., 2,41 € R
and x1---xpy1 € I, then -+ 2, € I or 41 € I. On the other hand,
Mohamadian introduced and investigated the concept of r-ideals in [13].
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Recall that a proper ideal I of R is said to be an r-ideal (resp., pr-ideal) of
R if, whenever ab € I for some a € R\ Z(R) and b € R, then b € I (resp.,
b"™ € I, for some positive integer n). It is well known that a proper ideal
I of R is a pr-ideal if and only if v/T is an r-ideal [13, Proposition 2.16].
Recently, Anebri et al. defined a new class of ideals that is related to the
class of r-ideals. A proper ideal I of R is said to be a (1,r)-ideal if abc € T
for some nonunit elements a,b,c € R, then ab € I or ¢ € Z(R).

Let R be a ring and E an R-module. Then R « E, the trivial ring exten-
sion of R by F, is the ring whose additive structure is that of the external
direct sum R & E and whose multiplication is defined by (a,e)(b, f) =
(ab,af + be) for all a,b € R and all e, f € E. (This construction is also
known by idealization A(+)E.) The basic properties of trivial ring exten-
sions are summarized in the books [9], [8]. Trivial ring extensions have been
studied or generalized extensively, often because of their usefulness in con-
structing new classes of examples of rings satisfying various properties (cf.
(2, 4, 7, 10, 11, 14]).

In this paper, our objective is to introduce and explore a new concept
of ideals that representing a generalization of prime ideals which consist
entirely of zero-divisors of R. A proper ideal I of R is said to be an n-(1,7)-
ideal if whenever nonunit elements x1,...,2,+1 € R and z1 - 241 € I,
then zix9-- 2z, € I or zy,41 € Z(R). In this paper, we present several
results to disclose the relationships between this new class and others that
already exist. Therefore, our new concept generalizes both r-ideals and n-
1-absorbing prime ideals consisting entirely of zero divisors. Additionally,
we show in Proposition 2.2 that any n-(1,r)-ideal of R is (m,r)-ideal for
positive integers m,n with m > n. Examples 2.3 and 2.4 show that the
converses of (1) and (4) in Proposition 2.2 may not be true, respectively.
In Theorem 2.8, we show that if a ring R contains an n-(1,r)-ideal of R
that is not an r-ideal for some positive integer n, then R is a local ring.
Moreover, we show in Proposition 2.14 that R is a total quotient ring if and
only if every proper ideal of R is n-(1,r)-ideal. Also, Theorem 2.15 provides
a description of n-(1,r)-ideals in chained rings. We prove that if R is a
chained ring with maximal ideal M, then I is an n-(1,r)-ideal of R if and
only if I = M™ M" 1 C Iorlisan (n—1)-(1,7)-ideal of R. Finally, we
explore the transfer of n-(1,7)-ideals in the localization of rings, the power
series rings and the trivial ring extension (see Propositions 2.23, 2.24 and
2.25).

2. PROPERTIES OF n-(1,7)-IDEALS

We shall begin with the following definition.
Definition 2.1. Let R be a ring and n be a positive integer. A proper

ideal I of R is said to be an n-(1,7)-ideal if whenever nonunit elements
Z1,...,xn € R and x1 - xpy1 € I, then 129+ 2y € I or 241 € Z(R).
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By definition, it can be seen that a proper ideal I is r-ideal if and only
if Iis 1-(1,7)-ideal of R and I C Z(R). Also, I is a (1, r)-ideal of R if and
only if T is a 2-(1,r)-ideal of R. In the following proposition, we start by
giving some elementary results of n-(1,r)-ideals.

Proposition 2.2. Let R be a ring, I be a proper ideal of R and n be a
positive integer. Then the following statements hold:

(1) Let m > n be positive integers. If I is an n-(1,r)-ideal of R, then I
is an m-(1,7)-ideal of R.

(2) The intersection of any family of n-(1,r)-ideals of R is an n-(1,7)-
ideal of R.

(3) FEvery n-1-absorbing prime ideal of R which consists entirely of zero-
divisors of R is an n-(1,r)-ideal.

(4) If I is an n-(1,7)-ideal of R, then /T is an (n —1)-(1,r)-ideal of R.
In this case, ™ € I for all x € /I N Reg(R).

Proof. (1) We use mathematical induction on n,m. To prove the claim, it
is sufficient to prove that I is an (n 4 1)-(1,r)-ideal provided I is an n-
(1,7)-ideal of R. Assume that 1 ---x,49 € I for some nonunit elements
X1,y Tpto € R. S0, 21+ Tpp1 = (2122)T3 - Tpy1 € I o1 2pgo € Z(R).
(2) and (3) are clair.

(4) Suppose that I is an n-(1,r)-ideal of R. Let zy,...,z, be nonunit
elements of R satisfying zizo-- -z, € VI , so there exists an integer k > 0
such that z¥zk ... 2% € I. This yields that 22*2% - .. 2% € I. By hypothesis,
we then have x2Fzk...2F | € T or 2% € Z(R). Hence x1---2,_1 € VI or
z, € Z(R). Now, let x € VT N Reg(R). Then there exists k& > 0 such that
zF € I. If k < n, then we are done. If k > n, then z* = x--- z2#~™. Hence,
by assumption, " € I because z¥~" ¢ Z(R). This completes the proof. [

We give the following examples to show that the converses of Proposition
2.2 (1) and Proposition 2.2 (4) may not be true.

Example 2.3. Let (R, M) be a local ring such that M # Z(R) and M™+! #
M™, where n is a positive integer. Then M™' is an (n + 1)-(1,7)-ideal of
R that is not an n-(1,7)-ideal. In fact, if x1---2n12 € M"H for some

nonunit elements x1,...,Tpy2 € R, then x1---xp41 € M™1. On the other
hand, the fact that M"* % M™ and M # Z(R) implies that there exist
Z1,...,&y € M and a regular element y € M such that x1 -+ 2, ¢ ML,

Since x1 -+ xpy € M"Y 2y ¢ M and y ¢ Z(R), we have M™ is
not an n-(1,r)-ideal.

Example 2.4. Consider the formal power series ring R = k[[X]], where k is
a field and X is an indeterminate over k. Then R is a local ring with unique
mazimal ideal M = (X). By Ezvample 2.3, we know that (X)"*! is not an n-
(1,7r)-ideal. Also, we observe that \/(X)"*t! = (X) is an (n —1)-(1,r)-ideal
of R.
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Theorem 2.5. Let R be a ring and I be an n-(1,r)-ideal of R for some
positive integer n. Then one of the following conditions holds:

(1) R is local with mazimal ideal M = /T and M™ C I, or
(2) I is a pr-ideal of R.
In addition, if the condition (1) holds then I is an n-(1,r)-ideal.

Proof. Assume that I is an n-(1,7)-ideal of R. Two cases are possible:
Case 1: If I ¢ Z(R), so there exists a regular element x € I. Then, for
each nonunit elements x1,...,x, € R, we have x1---x,x € I and hence
x1---xn € I. It follows that M™ C [ for any maximal ideal M of R and
thus M = \/W - VI. We conclude that M = /T for every maximal ideal
M of R. This yields that R is a local ring with maximal ideal v/I.

Case 2: We suppose that I C Z(R). Consider two elements x,y € R such
that zy € VI. If z is a unit element of R, then y € v/I. If y is a unit
element of R, so x € VI C Z(R). Now, we assume that z,y are nonunit
elements of R and = ¢ Z(R), then 2*y* € I for some positive integer k. If
k < n, we have y"a* = y---yz¥ € I. As I is an n-(1,7)-ideal, then y™ € I
and so y € VI. If k > n, so y*"+ly...ya¥ € I. Since I is an n-(1,r)-ideal,
we obtain that y € \ﬁ In both cases, we have \ﬁ is a pr-ideal of R. O

Corollary 2.6. Let R be a ring and P be a prime ideal of R. Then P is an
n-(1,7)-ideal for some positive integer n if and only if one of the following
conditions holds:

(1) PC Z(R).

(2) R is a local ring with maximal ideal P.

Proof. Tt suffices to show the “if” assertion. If P is an n-(1,r)-ideal of R
and P ¢ Z(R), then R is a local ring with maximal ideal M and M™ C P
by Theorem 2.5. Let x € M, so 2"t € M™ C P. Hence z € P because P
is a prime ideal of R. It follows that M = P, as required. O

The following example illustrates that the converse in Theorem 2.5(2) is
not true in general.

Example 2.7. Let R be a local domain with mazimal ideal M and P & M be
a nonzero prime ideal of R. Set J := 0 o P. It is clear that J C Z(R x R)
and v/J = 0 < R is a prime ideal. Then J is a pr-ideal of R < R. On
the other hand, J is not an n-(1,r)-ideal for any positive integer n. > 0. In
fact, let x € M\ P and 0 #y € P. So, we have (0,z)(z,0)---(z,0)(y,0) =
(0,yx™) € J. However, (0,2") ¢ 0 xx P and (y,0) ¢ Z(R < R).

Theorem 2.8. Let R be a non-local ring and n be a positive integer. Then
every n-(1,r)-ideal of R is an r-ideal.

Proof. 1t suffices to prove that every n-(1,r)-ideal of R is an (n — 1)-(1,7)-
ideal. Suppose that I is an n-(1,7)-ideal of R that is not an (n — 1)-(1,r)-
ideal. By Theorem 2.5, we may assume that I C Z(R). Hence there exist
nonunit elements z1,...,2, € R such that xy -+ -z, € I, x1---x,—1 ¢ I and
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xn ¢ Z(R). Let v be a nonunit element of R and u € U(R). Suppose that
u + v is a nonunit element of R. On the one hand, as vxy---x, € I, I is an
n-(1,r)-ideal of R and z,, ¢ Z(R), we conclude that va; ---x,_1 € I. On the
other hand, the fact that (v 4+ v)z1- -z, € I and z, ¢ Z(R) implies that
(utv)z1 - Tp—1 =Ux1" Tp—1 + 021 Tp—1 € I because I is an n-(1,7)-
ideal of R. It follows that uxy - -+ z,_1 € I, we conclude that x1---x,_1 € I,
a contradiction. Hence, u 4 v is a unit element of R. By [5, Lemma 1], we
obtain that R is a local ring, which is a contradiction. Thus every n-(1,7)-
ideal of R is an (n—1)-(1,r)-ideal. The rest is clear by [3, Theorem 2.7]. O

As immediate consequences of Theorem 2.8, we characterize n-(1, r)-ideals
in decomposable rings and polynomial rings.

Corollary 2.9. Let n be a positive integer and 11 and Is be two ideals of the
rings R1 and Ro, respectively. Then the following conditions are equivalent:
(1) I x Iz is an n-(1,r)-ideal of Ry X Ra.
(2) I x Iz is an r-ideal of Ry X Ra.

Corollary 2.10. Let R be a ring, n be a positive integer and I be a proper
ideal of R. Then the following assertions are equivalent:

(1) I1X] is an n-(1,7)-ideal of R[X].

(2) I[X] is an r-ideal of R[X].

Proposition 2.11. Let I be an n-(1,7)-ideal of a ring R for some integer
n > 0. Assume that I is not an (n—1)-(1,7)-ideal. Then there exist (n—1)
wreducible elements x1,...,xp—1 € R and a nonunit element x,, € R such
that x1 « - Tp_12n € I, but neither x1---xp—1 € I nor x, € Z(R).

Proof. If I is not an (n—1)-(1,r)-ideal of R, then there are nonunit elements

r1,...,Zn € R such that z1---x, € I but neither x;---z,_1 € I nor
Tn € Z(R). Assume that z; is not an irreducible element for some i €
{1,...,n — 1}. Hence, z; = ab for some nonunit elements a,b € R. As I is

an n-(1,r)-ideal of R and 1 -+ @, = ®1 -+ x—10bxiy1 - - Ty € I, we obtain
that z1---xp—1 € I or x, € Z(R), a contradiction. This completes the
proof. O

Proposition 2.12. Let R be a local ring with principal mazimal ideal M.
If M = (a1 ---an—1) for some positive integer n, then every n-(1,r)-ideal
contained in Z(R) is an (n — 1)-(1,r)-ideal.

Proof. Let x1,...,x, be nonunit elements of R such that x;---x, € I and
Zn ¢ Z(R). By Theorem 2.5, we have I is a pr-ideal of R, which implies that
x1 -+ Tn_1 € VI. On the other hand, we have -+ &p_1 = raj - - - a,_1 for
some element 7 € R. If 7 is unit, we then have M = /T and so I is an (n—1)-
(1,r)-ideal. If r is a nonunit element, so rajy---ap_1T, = x1- -z, € I.
Since I is an n-(1,r)-ideal of R, we conclude that ra;j - - - a,—1 € I and hence
x1---xp—1 € I. Thus I is an (n — 1)-(1,r)-ideal, as required. O
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Proposition 2.13. Let R be a ring and I be a proper ideal of R and n
be a positive integer. Then I is an n-(1,r)-ideal if and only if whenever
LIy Ihv1 €1 for some proper ideals I1,...,Iny1 of R, then Iy --- I, C I
or Iny1 € Z(R).

Proof. Suppose that I is an n-(1,r)-ideal and let Iy, . .., I,+1 be proper ideals
of R such that I1Is---I,41 C T and I,,11 € Z(R). For each j € {1,...,n},
let x; € I; and 2,41 € Iny1 N Reg(R). So o1 -+ 241 € I. By hypothesis,
we get x1---x, € I. It follows that Iy ---I,, C I. The converse is clear. [

We call a ring R a total quotient ring if every element of R is either a
unit or a zero-divisor. In the following proposition, we give a necessary
and sufficient condition, in terms of n-(1,r)-ideals, for a ring to be a total
quotient ring.

Proposition 2.14. Let R be a ring and n be a positive integer. Then R is a
total quotient ring if and only if every proper ideal of R is an n-(1,r)-ideal.

Proof. The “if” assertion is obvious. Conversely, by Theorem 2.8 and [13,
Proposition 3.4], we may assume that R is a local ring with maximal ideal
M. In addition, by assumption, we have M"*! is an n-(1,r)-ideal and
so Theorem 2.5 proves that M"*! C Z(R) (and hence M C Z(R)) or
M™ = M"™*1, Assume that R is not a total quotient ring, so M"™ = M"+1,
If M™ is a principal ideal, we must have M™ = 0 by Nakayama’s lemma,
a contradiction. On the other hand, let x € M"™. The fact that xR is an
n-(1,r)-ideal of R and M™ is not a principal ideal implies that xR C Z(R).
It follows that M™ C Z(R) and thus M C Z(R), the desired contradiction.
We conclude that R is a total quotient ring. ([l

Theorem 2.15. Let R be a chained ring with maximal ideal M, and I be
a proper ideal of R. Then I is an n-(1,7)-ideal of R for some integer n > 0
if and only if either I = M™, M" 1 C I or I is an (n —1)-(1,r)-ideal of R.

Proof. Let I be an n-(1,r)-ideal of R for some integer n > 0, so by Theorem
2.5, either (I € Z(R) and I is a pr-ideal) or M™ C I. Now, we suppose
that I € Z(R) and /I is an r-ideal. Let z1---x, € I for some nonunit
elements z1,...,2, € R such that z,, ¢ Z(R). Since /T is an r-ideal of R,
we have z1---2,_1 € VI and hence x1 -+ z,_1 € Z(R). This yields that

zi, € Z(R) for some iy = 1,...,n — 1. As R is a chained ring, we obtain
that either z;, € z,R or x, € z;,R. As x;, € Z(R), we obtain easily that
Tn ¢ ;R and thus z;, = ax, for some nonunit element a € R. Since

Tl ... Tjy—10TnTig+1 " Tn € I, z, ¢ Z(R) and I is an n-(1,r)-ideal of R, we
conclude that x1 -+ - 2,1 € I. Consequently, I is an (n—1)-(1, r)-ideal of R.
On the other hand, we assume that M™ C I and M"! ¢ I. We will prove
that M" = I. Let = € I and pick an element 21 ---x,_1 € M" '\ I. So,
T € x1---Typ_1R because R is a chained ring. It follows that x = azy - 1
for some nonunit element a € R and thus = ax1---x,—1 € M". Finally,
we have that M" = 1. O
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Theorem 2.16. Let R be a local ring with maximal ideal M and P be a
prime ideal of R. Then PM is ann-(1,r)-ideal of R if and only if P C Z(R)
or P=M.

Proof. Suppose that PM is an n-(1,7)-ideal of R. Then, by Theorem 2.5,
either M™ C PM C P or PM C Z(R). It follows that M = P or P C
Z(R). For the converse, let z1, ..., xy41 be nonunit elements of R such that
X1 XTpy1 € PM. f P=M, then z1---2,—1 € Pand so x1---x, € PM.
Now, assume that P C Z(R). If x; € P for some i € {1,...,n}, then
x1-+-Tp € PM. Thus, we may assume that x; ¢ P for any i € {1,...,n}.
Hence, x1 -+ -z, ¢ P and so x,41 € P since PM C P and P is prime. This
yields that z,4+1 € Z(R), as required. (]

The following lemma is needed in the proof of our next result.

Lemma 2.17. Let R be a ring, I be an n-(1,r)-ideal of R for some integer
n>2 andd e R\(INU(R)). Then (I :d) ={x € R|dx € I} is an
(n —1)-(1,r)-ideal of R.

Proof. Assume that I is an n-(1,r)-ideal of R withn > 2, and z1 -+ 2, € (I :

d) for some nonunit elements 1, ...,x, € R, and consequently, dz; -- -z, €
I. By assumption, dzy---xp—1 € [ or x, € Z(R). Thus 1 ---xp—1 € (I : d)
or x, € Z(R), as needed. O

Let R be a ring and n be a positive integer. An n-(1,7)-ideal I of R is
said to be a maximal n-(1, r)-ideal if there is no n-(1, r)-ideal which contains
I properly.

Proposition 2.18. Let R be a ring and n be a positive integer. Then every
mazimal n-(1,r)-ideal of R is an n-1-absorbing prime ideal.

Proof. Let I be a maximal n-(1,r)-ideal of R. Suppose that xj ---x,41 € T
for some nonunit elements xi,...,z,41 € R and z,4+1 ¢ I, so by Lemma
2.17, (I : xp41) must be an n-(1,r)-ideal. Since I is a maximal n-(1, r)-ideal,
we obtain that I = (I : 2,,41) and thus z1 -2, € I. O

Proposition 2.19. Let R be a ring and n be a positive integer. The follow-
ing statements hold:

(1) If I is a proper ideal of R and P is an n-1-absorbing prime ideal
of R such that I N P is an n-(1,r)-ideal, then either I or P is an
n-(1,r)-ideal.

(2) Suppose that P, ..., Py, are n-1-absorbing prime ideals of R, which
are not comparable. Then N, P; is an n-(1,r)-ideal if and only if
P; is an n-(1,7)-ideal, for alli=1,...,m.

Proof. (1) If I C P, then I = I N P is an n-(1,r)-ideal. Now, we may
assume that I ¢ P. Take nonunit elements xi,...,zn+1 of R such that
1+ Tpp1 € P and zp41 ¢ Z(R). By assumption, there is an element
a € I\ P, which implies that (az1)x2 - 2p41 € INP. So, x1 -+ zpa € P.
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As P is an n-l-absorbing prime ideal, we must have z1---z, € P. We
conclude that P is an n-(1,7)-ideal.

(2) Tt suffices to show the “if” assertion. Assume that z1-- 2,11 € P
for some nonunit elements z1,...,2,41 € R and zp41 ¢ Z(R). Let b €
(I1;2 P5) \ Bi, then by - - - zpy1 € NJLy Pj. Since N7, Pj is an n-(1, 7)-ideal,
we conclude that bz ---x, € ﬂ;”:le, and thus z1 - --x,b € P;. This yields
that z1 - - -z, € P;, and so P; is an n-(1,r)-ideal. O

Proposition 2.20. Let R be a ring, n > 2 be an integer and Iy, 12, ..., Iy
be proper ideals of R such that I; and I; are coprime for each i # j. Then
N7y 1 s an n-(1,r)-ideal if and only if Ij is an (n—1)-(1,7)-ideal, for each
jed{l,...,m}.

Proof. Suppose that Ny 1; is an n-(1,r)-ideal. Let x1,...,z, be nonunit
elements of R such that ;- -z, € I, and z, ¢ Z(R). Since I}, and I; are
coprime for each k # j, so I and ﬂ;‘:l,#klj are coprime. So, 1 = a+b
with @ € I and b € N}, ., I;. The fact that N7, 1; is an n-(1,7)-ideal
gives that bxy...xp_1 € ﬂ;ﬁ:llj since bz - Xy € ﬁ;-":llj and z, ¢ Z(R). Tt
follows that 1 xp_1 = ax1 -+ Tp_1+bx1---Tn_1 € I, and thus I} is an

(n — 1)-(1,r)-ideal. For the converse, it suffices to combine the assertions
(1) and (2) of Proposition 2.2. O

Corollary 2.21. Let R be a ring, n > 2 be an integer, 1 be a proper ideal of
R and M be a mazimal ideal of R. If I € M and INM is an n-(1,r)-ideal,
then both ideals I and M are (n — 1)-(1,r)-ideals.

Proof. 1t can be seen that I ¢ M implies that I and M are coprime ideals.
Then, by Proposition 2.20, we have I and M are (n — 1)-(1,r)-ideals. O

According to [13, Definition 3.16], if R C T are two rings, then we say
that R is essential in 7', if RN I # (0), for any nonzero ideal of 7T'.

Proposition 2.22. Let R C S be two rings such that R is essential in S
and n > 0 be an integer. If I is an n-(1,r)-ideal of S, then I N R is an
n-(1,r)-ideal of R.

Proof. Suppose that z; - - - z,41 € INR for some nonunit elements z1, ..., Ty €
R and z,41 ¢ Z(R). We will prove that x,4+1 ¢ Z(S). If 2,41 € Z(S), then
Anng(c) # 0. So, by hypothesis, Anng(c) = Anng(c) N R # (0). This
implies that z,4+1 € Z(R), which is a contradiction. Now, since I is an
n-(1,r)-ideal of S and x1---xp 1 € I, we have that zq---x, € I. It gives
that x1---x, € I N R. This completes the proof. O

Proposition 2.23. Let R be a ring, n be a positive integer and S be a
multiplicatively closed subset of R. If I is an n-(1,7)-ideal of R, then S~
is an n-(1,7)-ideal of S~'R.

Proof. Suppose that I is an n-(1,7)-ideal of R. Let Z4,... Intl he nonunit

7 Sp41

elements of S~ R such that ... Zedl _ Bt o S~17I. Then there exists
1 Sn+1 81 Sn+41
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an element ¢ € S such that tx; - - - xn4+1 € I, which implies that txy .- 2, €
or Tp41 € Z(R) since I is an n-(1,r)-ideal. It follows that T € ST or
Tn+1 —1

S €EZ(STR). O
Proposition 2.24. Let I be a proper ideal of a ring R. Then I + X R[[X]]
is an n-(1,r)-ideal for some positive integer n if and only if R is a local ring
with mazimal ideal M = /T and M"™ C I.

Proof. Assume that I + X R[[X]] is an n-(1, r)-ideal for some integer n > 0.
So, by Theorem 2.5, we have R[[X]] is a local ring with maximal ideal
L = T+ XR[X]] = VI+ XR[[X]] and L C I + XR[[X]]. Using [6,
Theorem 2], we conclude that R is local with maximal ideal M = v/I. In
addition, it can be seen that M"™ C I. Conversely, suppose that R is local
with maximal ideal M = /T and M™ C I. By [6, Theorem 2], we obtain
that R[[X]] is local with maximal ideal L = M + XR[[X]]. Moreover,
L™ C M™ + XR[[X]] C I+ XR[[X]]. Thus I + XR[[X]] is an n-(1,r)-ideal
of R. O

Proposition 2.25. Let R be a ring and E be an R-module. If I is an n-
(1,7)-ideal of R for some integer n > 0, then I < E is an n-(1,r)-ideal of
R x E. The converse is true if Z(E) C Z(R).

Proof. Suppose that I is an n-(1,r)-ideal of R for some integer n > 0. Let
(z1,€1), .-, (Tn+1, €nt1) be nonunit elements of R < F such that (z1,e1) - -+
(Tpt1,6nt1) € I < E. So, 21+ xpt1 € I and x1,...,2p41 are nonunit
elements of R. The fact that I is an n-(1,r)-ideal of R proves that z; - - - x,, €
I or x4 € Z(R) and hence (z1,e1) - (Tn,en) € I < E or (Tpi1,6n41) €
Z(R x E). So, we conclude that I o E is an n-(1,r)-ideal of R o< E. Now,
we will prove the converse under the additional condition Z(E) C Z(R). If I
is a proper ideal of R such that I o E is an n-(1,r)-ideal of R. Suppose that
x1 - Tpt1 € I for some nonunit elements of R, then (x1,0)- - (zy+1,0) €
I «x FE and (z1,0),...,(zn+1,0) are nonunit elements of R o« E. Thus,
(21,0) -+ (20,0) € I x E or (zp41,0) € Z(R x E). By hypothesis, we have
1Ty € I or 241 € Z(R) and hence I is an n-(1,r)-ideal of R. This
completes the proof. O

In Proposition 2.25, the converse may not be true if one deletes the hy-
pothesis that Z(E) C Z(A).

Example 2.26. Let p be a positive prime integer and consider the Z-module
E = Zy. Then pZ x E is an n-(1,r)-ideal of Z < E because it is a prime
ideal and pZ x E C Z x E. However, by Theorem 2.5, pZ is not an
n-(1,r)-ideal of Z for each positive integer n.
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